
Session ID: ASEC-201
Session Classification: Intermediate

Mike Shema
Qualys

HTML5 Security Pitfalls

Agenda

Scope of HTML5

Browser Security

HTML5 as Vulnerability & Exploit

Improving Web Site Security

2

The Path to HTML5

3

3350 B.C. Cuneiform enables stone markup languages.

July 1984 Neuromancer: “Cyberspace. A consensual
hallucination...” (p. 51)

Dec 25, 1990 CERN httpd starts serving HTML.

Nov 1995 HTML 2.0 standardized in RFC 1866.

Dec 24, 1999 HTML 4.01 finalized.

HTML5 According to Spec

 Canvas, Audio, Video
 Cross Origin Request Sharing
 Web Sockets
 Web Storage
 Web Workers

4

HTML5 According to Folklore

 Social []
 [] as a Service
 Browser Games
 [] cloud []
 W3C Web Design and Applications (CSS, DOM,

HTML, JavaScript, XHR)
 http://www.w3.org/standards/webdesign/

 Flash, Silverlight, and anything else that loads
in a browser.

5

Reflecting Reality

6

14
1

73
12

Privacy & Security

 Issues with design vs. implementation
 Ambiguities, Errors, Deficiencies

 Security barriers stronger outside of browser
than within.

 The rise of “privacy exploits”
 Pre-HTML5 issues don’t go away post-HTML5

7

Security from Design

 Prepared statements, parameterized queries.
(SQL injection)

 Cryptography (HMAC vs. MAC)
 X-Frame-Options header (clickjacking)
 Origin header (cross-site request forgery)

8

Relevant Security

9

IR

Relevant Security

Good Cert Bad Cert

10

IR

The “Dirty Harry” Postulate

With three tabs already open in your browser of
choice, do you feel lucky?

http://bit.ly/wszWO
http://bit.ly/lSxst

http://bit.ly/OApJX
http://bit.ly/SAFEST

11

Never Mind the IDN, Here’s the QR Codes

12

Exploits vs. Enablers

 Review and demonstrate how vulnerabilities
might arise from HTML5

 Review and demonstrate how well-known
vulnerabilities can be further exploited by
HTML5 features

13

The Path to XSS

 The perpetual web vulnerability.

 Browser quirks, deficient
 parsers, incorrect
 implementations

 http://ha.ckers.org/xss.html
 http://html5sec.org/
 http://xssed.com/

14

Oldest Trick in the HTML

<img src="javascript:errurl='http://
www.because-we-can.com/users/anon/hotmail/
getmsg.htm';nomenulinks=top.submenu.document.l
inks.length;for(i=0;i<nomenulinks-1;i++)
{top.submenu.document.links[i].target='work';
top.submenu.document.links[i].href=errurl;}
noworklinks=top.work.document.links.length;
for(i=0;i<noworklinks-1;i++)
{top.work.document.links[i].target='work';
top.work.document.links[i].href=errurl;}">

http://www.deadliestwebattacks.com/2010/01/earliest-ish-hack-against-web-based-e.html

15

HTML5 Form Validation

 New form and input types and attributes
 Usability does not confer security
 Remember server-side validation

16

Client Validation

<input type="text" name="a" value=""
placeholder="search term">

 Not to contain HTML
 Still an XSS vector if placeholder value is

dynamically changed from user input

17

Variations on a Theme

<input type="image"
 src="-42" onerror=alert(9)//">
<input type="image"
 src=""formaction=javascript:alert(9);a="
">
<input type="text" name="a"
 value="" autofocus onfocus=alert(9);a="
">
<input type="text" name="a"
 value="" autofocus onblur=alert(9);a="
">

18

It’s Only HTML5, But We Like It

<body onscroll=alert(9)>

<body oninput=alert(9)>

<video>
<source src=a onerror=alert(9)>
</video>

19

XSS

 Regular expressions excel at pattern matching
-- not parsing.

"href=javascript:alert(9)>

<meta name=""<img src=a
onerror="alert(9)">

<!--<img
src=a onerror=alert(9)//"

20

Speaking of Parsing Surprises

<input type="text" name="a" value='___'>
<input type="text" name="b" value="___">

<input type="text" name="a" value='\'id='>
<input type="text" name="b" value="'><img
src=a onerror=javascript:alert(9)//">

21

Render Unto XSS

22

Render Unto XSS + HTML5

<input type="text" name="a" value='___'>
<input type="text" name="b" value="___">

<input type="text" name="a" value='\'id='>
<input type="text" name="b"
value="'onfocus=javascript:alert(9)//">

23

“DOM Stealing”

 Taking advantage of JavaScript variables’ global
scope.

 DOM-based XSS
 Accessing elements by id

 .getElementById(x)
 id’s make for easy DOM programming and therefore

easy XSS programming

 ...and keyloggers, etc.
 http://labs.portcullis.co.uk/application/xssshell/

24

Web Workers

 Worker() and SharedWorker() enable threading
within JavaScript.

 Designed with security in mind, e.g. restricted
from accessing the DOM.

 Still able to access XHR.

25

Web Workers Pitfalls

 Bringing concurrency attacks to the browser?
 Predicated on misuse or poor use of Workers by the

web application.
 Client-side validation without sever-side

confirmation, e.g. race conditions in authorization.

 DoS: Battery draining attacks on the device
 DoS: Bandwidth attacks against other sites
 Password cracking (interesting, but poorly

suited), distributed click fraud (more
interesting, potentially lucrative)

26

Relaxing Same Origin Policy

 Cross-page/domain messaging
 Web developers already using clumsy work-

arounds for Same Origin, why not accept and
standardize to help secure?

 There will always be ugly, insecure web
development, e.g. JSONP.

27

Cross Origin Request Sharing Pitfalls

 Trust -- The number one issue with permitting
communication with another domain.

 Mixing code and data (sound familiar?)
 Header injection attacks to spoof Access-

Control headers
 ...and mistakes happen: crossdomain.xml

28

Web Storage

 Unencrypted store for user data.
 Not opaque to the user
 Local and Session

29

Web Storage Pitfalls

 Bad place to put context info that should be
server-side.

 Use Local vs. Session Storage appropriately.
 Will be targeted by trojans, bots, etc. already

looking for financial data, key stores on the file
system.

 Nice target for privacy exploits if not security
exploits.

 XSS document.cookie attack on steroids -- local
storage doesn’t have an httponly attribute

30

Web Sockets

 More XmlHttpRequest object on steroids
 Primarily a way to leverage vulnerabilities and

make XSS more interesting.
 Host detection and port scanning
 Denial of Service
 Information stealing

31

Plugin Plague

 Plugins still learning from ActiveX (Adobe Flash,
Microsoft Silverlight, Google Native Client, ...)

 Impedance mismatch between sandboxes.
 Inconsistent enforcement of Same Origin Policy.

32

Plugin Plague

 Remember privacy?
 Tracking tokens and browser controls.

33

Overextending the Browser

 WebGL crossing the boundary from user-space
browser to kernel-space drivers

 Geolocation’s privacy implications yet another
boon to XSS attacks

34

Considering Code

 The impact of mobile has driven more growth in
web sites and HTML5 -- at the expense of
security.

 HTTPS in the browser too often becomes HTTP
in the mobile.

 Back to the web hacking days of quickly written
PHP vs. secure PHP?

35

There’s an “S” for that...

36

Inconsistent Design

37

✗

✗

✔

Small Steps

38

Frameworks

 Provide a means to improve design and
implementation

 Encourage consistency
 Shift from addressing security issues with code

fixes to upgrading versions -- patch
management vs. code review

39

Frameworks

 Establish clearer boundaries between the client
and server.

 Reviewing an API is easier than crawling a site.
 Makes for easier unit tests, but harder

automated tests (i.e. crawling).
 Remember rate limiting.

40

Frameworks

 Avoid quirks, standards are more standard now.
 Prefer feature detection over User Agent

sniffing
 Agree where encoding takes place, how text is

received from an API.
 What’s the destination?
 What’s the expectation?

 Stop building HTML on the server -- avoid the
easy XSS mistakes. (And worry about DOM XSS.)

41

Browser Pitfalls

 When is data an element, attribute, id, class,
text, or script?

 Insufficient Same Origin Policy restriction
 Uncontrollable tracking data (user can’t clear,

manage, etc. a tracking atom)
 Trust is based on DNS -- and fragile.

42

Final Note for Users

 Use a unique password for your prime email
account -- this is your de facto identity.

 Does a video game
provide more security
than your bank?

43

Final Note for Users

 Keep the browser up to date
 Notice how compromised SSL certificates are fixed

with patches, not protocols.

 Keep the plugins up to date.

44

Apply

 Address decade-old issues first.
 HTML5’s new features extend the attack

surface for browsers -- keep the browser up to
date.

 HTML5 can be leveraged to enhance an exploit
against “old” HTML4.

 Move towards frameworks and distinct
boundaries between API and the client.

 Understand the privacy implications of HTML5
features.

45

Thank you!

 Questions mshema@qualys.com

 Slides http://www.deadliestwebattacks.com/

46

Zombie

